
1. Introduction

Over the last decade the task of representing very
large “point clouds” by meshed surfaces has arisen in
many applications. Such point clouds may have been
generated from terrain surveys or from LADAR (LAser
Direction And Ranging) scans of objects. Work has
centered around the concept and application of
Triangulated Irregular Network (TIN). Here the “foot
prints” (xi, yi) of data points (xi, yi, zi) are “triangulated”,
that is, the area of interest is tiled by non-overlapping
triangles defining a piecewise triangular “TIN-surface”
in space as each triangle is lifted according to the ele-
vations zi at its corners as indicated in Fig. 1. Most
often, the triangulation used is the “Delaunay” triangu-
lation, characterized by the “empty circle property” in
which the circumcircle of each triangle does not con-
tain any triangle corners in its interior (see Fig. 2).
Figure 3 features such a Delaunay triangulation, under-

lying a TIN, created from a LADAR scan of a construc-
tion site on NIST grounds. The construction of the sur-
face from adjacent patches or “elements” is basically a
“Finite Element” technique.

TIN constructs utilize the actual data points directly
even if they are distributed irregularly rather than refer-
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Fig. 1. TIN meshing: Triangulated surface over a triangulation in the
footprint plane.



ring to approximations by regular rectangular grids.
They adapt naturally to disparate data densities.
Importantly, they support strategic selection of data
points to be used as the support points for a TIN sur-
face.

Conceptually, TINs define which points may be con-
sidered “neighbors” of each other. This proximity con-
cept based on a direct neighbor criterion differs from
concepts based on a fixed distance cutoff in that it
adjusts automatically to differing data densities such as
in data collected by ground based LADAR. Figure 3
exemplifies the dramatic differences in densities
encountered in ground-based LADAR scans. Also,
because of the neighbor relation provided by a TIN, the

utility provided by that construct is not restricted to sur-
face generation, but extends to data editing and analy-
sis.

The TIN surface, as defined according to Fig. 1, is
C0, that is, it is continuous but usually not smooth: it is
typically not differentiable along triangle edges, since
the plane of any of the spatial triangles constituting the
surface generally differs from the planes of its adjacent
triangles. The TIN concept of triangulation-based sur-
face generation is frequently understood to imply the
use of such planar “elements” resulting in a non-
smooth, piecewise linear TIN surface. It should be
emphasized, however, that the TIN concept also sup-
ports the use of non planar, that is, curved elements for
a smooth or C1 surface. Planar elements offer some
advantages besides simplicity and a certain robustness
to be discussed below. Visualization still requires piece-
wise linear representations in order to delineate hidden
surfaces. Volume computations similarly tend to be
either grid-based or based on piecewise linear surfaces
for ease of computation. In those cases, a smooth sur-
face would have to be discretized or approximated by a
piecewise linear surface. This then begs the question,
why not use planar elements in the first place?

Without any doubt, however, there are many
instances, in which a smooth surface representation
would provide definite advantages:
• More accuracy could be achieved without increasing

memory requirements because curved elements
encode more geometric information than planar ele-
ments.

• Clusters of coplanar points are avoided when sam-
pling the surface at a discrete set of foot prints such
as regular grid points.

• When simulating movement over a terrain surface, a
smooth ride is preferable. A ride over a piecewise lin-
ear surface is necessarily bumpy at transitions from
one triangle to another.

• In many applications, several point clouds which
were collected with reference to different coordinate
systems need to be “registered”, that is, combined
within a common coordinate system. Some common
registration methods, such as point-to-surface itera-
tive closest point (ICP) proposed by Besl [2], require
minimizing the deviations of points in one point
cloud from the surface representation of another
point cloud. This minimization process should work
much better if that surface were smooth.

In computer aided design (CAD), design-defined
objects are routinely represented by surfaces that are C1

or even C2. Terrain representation, however, poses a
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Fig. 2. Delaunay triangulation: Circumcircles of triangles do not
contain vertices in their interior.

Fig. 3. A TIN created from the LADAR scan of terrain.



different challenge: The location of “crease lines” or
“break lines”, along which the actual terrain surfaces
are not differentiable, are usually not known ahead of
time, whereas in a CAD environment break lines tend
to be specified as part of the design. Unspecified break
lines, on the other hand, along with actual verticalities,
tend to give rise to spurious oscillation and, what may
be called, “Gibbs phenomena” in analogy to the phe-
nomenon well known from the theory of Fourier series.
TIN surfaces based on planar elements, on the other
hand, are more robust, and can be constructed so as to
automatically represent and, if necessary, report break
lines. Susceptibility to spurious oscillations and Gibbs
phenomena are one of the reasons why the terrain mod-
eling community has been slow to accept smooth sur-
faces. There has thus been a long quest for “non-oscil-
latory splines” which would obviate this pesky conun-
drum.

In 1994, Lavery [11,12,13] (see also Gilsinn and
Lavery [8,9,10]) proposed successful paradigms for
univariate as well as bivariate non-oscillatory splines,
which could be used for representing 2D or 3D data
sets, respectively. Lavery introduced the term “L1

splines” for his brand of nonoscillatory splines. The
term L1 splines is, however, frequently misinterpreted
as minimizing an L1 measure-of-fit when approximat-
ing a point set by, say, classical splines. For this reason,
we prefer the term “Lavery splines”.

Classical splines are characterized by their minimiz-
ing energy functionals. Lavery splines, on the other
hand, minimize different functionals. In the bivariate
case, especially, the computational effort of minimizing
these functionals, however, exceeds the effort required
by the classical approach by an order of magnitude. For
the bivariate case we have, therefore, considered an
approximation to the calculation of Lavery splines,
along with a prior modification of the functional pro-
posed by Lavery for the bivariate case. This modified
bivariate functional is still an extension of Lavery’s
functional for univariate functions, but it extends a dif-
ferent aspect of the latter. It also is invariant under pla-
nar rotations of the coordinate system, which Lavery’s
bivariate functional is not. We will present preliminary
results for both univariate and bivariate nonoscillatory
splines.

The main thrust of this paper, however, remains to
illustrate the utility and performance of bivariate non-
oscillatory splines, building on the previous study by
Gilsinn et al. [7] , and also on an early terrain modeling
study by Mandel et al. [18]. Both studies employ TIN
techniques in conjunction with the “reduced Hsieh-
Clough-Tocher (rHCT)” element, the approach was

pioneered by Lawson [14,15] and is followed in this
work. It involves specifying elevations zi and two
slopes zix , ziy at each triangle corner or vertex vi = (xi , yi)
in a triangulation, and filling in, at each triangle, the
thereby defined rHCT elements, results in a smooth
surface over an entire TIN.

The classical spline approach to, say, interpolating
the elevations at vertices of a triangulation would be to
prescribe the elevations zi , and select the remaining
parameters, namely the partial slopes zix , ziy , so as to
minimize some energy functional. This was indeed the
approach taken in the work by Mandel et al. [18] The
task to be accomplished there was to represent terrain
given by digitized contour lines. The elevations at the
data points were thus determined by the elevation of the
contour line on which the data point was located. In the
end, elevations were to be evaluated at the points of a
square 900 × 900 grid. At the time, — 1985 — visuali-
zation procedures that are now routine were not yet
commonly available. A display of the results had to
wait another year. So assessing the quality of the repre-
sentation was restricted to manual spot checking. It
thus took until a day before a scheduled presentation
that, to our dismay, huge oscillations were detected.
Fortunately, it turned out that it was not due to a prob-
lem with the method but was caused by an error in the
data that had been provided: the elevation of a single
contour line had been tagged 100 feet too high, causing
the disruption. In this instance, the oscillations proved
to be actually beneficial in that they uncovered data
errors.

In Sec. 2 we discuss aspects of univariate Lavery
splines in order to shed light on related issues for
bivariate splines, which are addressed in Sec. 3. The
algorithm proposed here for bivariate non-oscillatory
splines requires solving large sparse systems of linear
equations. Experience was gathered concerning the
performance of the well known Gauss-Seidel algo-
rithm.

2. Univariate Spline Interpolation

While the emphasis of this work is on bivariate
splines for surface generation, an examination of uni-
variate splines is taken up in order to highlight some of
the issues pertaining to splines in general. In the uni-
variate case, cubic “spline functions” are most com-
monly used and are considered here. They form a linear
space

F
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of piecewise cubic C1 functions f (x) defined locally
over intervals between “knots”

x0 < x1 < ... < xn ,

that is, they consist of cubic polynomials

fi(x), x ∈ [xi–1, xi], i = 1, ..., n.

Adjacent cubic polynomials are required to assume the
same values yi at common interior knots,

yi = fi(xi) = fi+1(xi).

This ensures continuity of the complete spline function
f (x) over the entire interval

I = [x0, xn].

In addition, the polynomials are to assume the same
slopes

mi = f ′i (xi) = f ′i+1(xi).

The spline functions f (x) are thus continuously differ-
entiable, that is, they belong to class C1. In what fol-
lows, the linear spaces

F ′, F″

of first and second derivatives of spline functions are
also considered, in spite of the fact that, at common
knots, the second derivatives of adjacent cubic polyno-
mials may not agree, so that the spline functions f (x) ∈
F are generally not twice differentiable at such knots.
However, they are twice differentiable everywhere but
on this set of measure zero. For the purposes of integra-
tion below, it does not matter that the function f ″(x)
may not be defined for those arguments.

Each of the constituent cubic polynomials fi(x) is
uniquely determined by the values yi–1, yi at the knots
xi–1, xi and the slopes mi–1, mi at those locations (Fig. 4),
in fact, the polynomial is linear in these parameters.
The entire function f (x) is thus uniquely determined by
its values and slopes at the knots, and it, too, depends
linearly on these parameters, so that the space F is iso-
morphic to the 2(n+1)-dimensional vector space of val-
ues yi and slopes mi, i = 0, ..., n.

We now turn to the task of interpolation. Here the
values yi at the knots xi are fixed and specified. Given a
particular specification of values yi, a corresponding

“interpolating spline function” depends only on the
parameters mi:

f (x) = f (m0, m1, ..., mn; x).

Collectively, these functions define affine manifolds or
flats,

S, S ′, S″,

within the linear spaces F, F ′, F″, respectively. That is,
if

then it follows that correspondingly

The question then becomes, how to select slopes mi so
as to achieve a “satisfactory” interpolation. That selec-
tion is generally made by minimizing a functional on
the affine space S defined by an integral. In this work,
we reserve the term “spline” — as opposed to “spline
function”, for the results of such a minimization.

2.1 Paradigms for Univariate Splines

“Classical splines” are uniquely defined as those
interpolating cubic spline functions which are (i) C2,
that is, twice differentiable, such that

(1) fi″(xi) = fi+1″(xi), i = 1, ..., n – 1                

holds at interior knots, and for which (ii) the second
derivative vanishes

(2) f ″(x0) = f ″(xn) = 0                         
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Fig. 4. Hermite cubic polynomial determined by coordinates and
slopes at end points.
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at the two exterior knots. Holladay proved early on (see
Ahlberg [1]) that classical splines are also defined as
the unique minimizers of the “thin beam energy”

(3)

over the affine space S of all C1 interpolating spline
functions.

Condition (2) is familiar to structural engineers as
the vanishing of the second derivative at the “free end”
of a beam. It is, however, remarkable that this energy
minimization enforces also a higher level of compati-
bility across knots (1) so that the minimizing C1 spline
functions are, in fact, in class C2. On the other hand,
this stiffness contributes to the tendency of classical
splines to produce spurious oscillations, Gibbs phe-
nomena and undesirable inflections.

Several attempts have been made to avoid these
problems. Taking a clue from mechanics, Schweikert
[20] and Cline [3] have introduced “tension splines”,
where the arclength of the spline function is made part
of the defining minimization. Reinsch (see Stoer and
Bulirsch [21]) moved to “exponential splines” by
adding a multiple of the square of first derivatives to
the integrand in (3). Those efforts were only partially
successful. Drawbacks include the need to specify an
additional parameter in order to balance conflicting
minimization requirements, and the fact that these tech-
niques are not readily generalized to the bivariate case.

Lavery splines, on the other hand, appear to avoid
such shortcomings. In Figs. 5 and 6 we compare Lavery
splines against classic splines. We are particularly
impressed with the performance of Lavery splines for
the example in Fig. 8, as compared to the example in
Fig. 7. What is the secret of Lavery splines? How are
they defined as opposed to classical splines?

Lavery defines his nonoscillatory splines, in essence,
as minimizing the integral of the absolute value rather
than the square of the second derivative of a spline
function:

(4)

over the given affine space S of interpolating spline
functions.
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Fig. 6. Lavery spline vs. classic spline: Example 2.
0

( ) | ( ) | dnx

x
e f f x x′′= ∫



2.2 Expressing Holladay and Lavery Integrals

For the purposes of this paper, we will refer to the
integrals (3) and (4) as the “Holladay integral” and the
“Lavery integral”, respectively. The goal of this section
is to derive expressions for the values of these integrals
in terms of the slopes mi , i = 1, ..., n, at the knots of the
spline function f (x) under consideration. Both are the
sums of the corresponding integrals of the second
derivatives of the individual cubic polynomials fi (x),
which constitute the spline function f (x).

As pointed out in Sec. 2.1, each such cubic polyno-
mial is uniquely defined by its end points (xi–1, yi–1), (xi ,
yi) and its end slopes mi–1, mi . The various formulas
describing this polynomial are commonly referred to as
“Hermite” formulas. For the versions used here, we
introduce the quantities

∆i = xi – xi–1

and

where Mi represents the slope of the straight line
between end points. Instead of referring to the variable
x directly, the following formulas are in terms of the
weights

(5)

where λi + µi = 1, and λi , µi ≥ 0, for x in the interval
[xi–1, xi] . Such weights are often referred to as
“barycentric coordinates” or, in the bivariate case, as
“triangle coordinates”. With these conventions, we
find, for instance,

(6)   fi(x) =

λiyi–1 + µiyi + λi
2µi(mi–1 – Mi)∆i – λiµi

2(mi – Mi)∆i .

Furthermore, by definition (5),

dx = –∆idλi = +∆idµi ,                       

the chain rule yields, using (λi + µi)2 = 1,
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Fig. 7. Classic splines produce unnecessary variations in curvature.

Fig. 8. Lavery spline has smooth curvature transitions.
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f ′i(x) = 6λiµiMi + (λ2
i – 2λiµi)mi–1 + (µ2

i – 2λiµi)mi.

An alternate expression for the first derivative is readi-
ly derived:

(7) f ′i(x) = λimi–1 + µimi + λiµiDi .    

Here the quantity

(8)

vanishes if and only if the polynomial f (x) has degree
less than three. Because by (5)

–Di is seen as the lead coefficient of f ′i(x) as expressed
in x. Consequently –1/3Di is the lead coefficient of fi(x).
Di < 0 indicates that the function is concave up to its
inflection point and convex thereafter. Conversely, Di >
0 indicates that convexity precedes concavity in the
direction of the x-axis. The quantity Di will play a
major role in what follows. The same is true for the
quantities Ui, Vi in the expression

(9)

where

(10)

The coefficients Ui , Vi thus relate to the two-sided sec-
ond derivatives of fi(x) at knots xi . Note that

Di = Ui + Vi

and also that, in view of (5),

An expression for the thin beam energy of the individ-
ual polynomial fi(x) is now readily derived:

The full Holladay integral is the inhomogeneous quad-
ratic function of the variables mi , arrived at by adding
the energies E(fi) of all partial functions fi(x).
Introducing the vector of slopes

m∼ = (m0, m1, ..., mn)T,

we have in matrix notation

E(f ) =  m∼ THm∼ – 12M
∼ Tm∼  + 12c,

where

and

Minimizing this expression for the Holladay energy
integral is to solve the linear system of equations

(12)                              2Hm∼ = M

or
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The first equation, in fact, may be restated by (10) as

that is, as the requirement (2) that second derivatives
vanish at the first knot. The last equation reflects the
corresponding requirement at the last knot. The second
equation is equivalent to

implying second order differentiability at the interior
knot x1. The remaining equations similarly enforce
compatibility of the one-sided second derivatives at the
remaining interior knots. This confirms the result of
Holladay.

The reader should note that the system (12) for clas-
sical splines differs from the linear system mostly
offered in the current literature. There the second order
differentiability of the classical splines is already
assumed and the spline functions are formulated in
terms of those second order derivatives, ni = f ″(xi), i =
0, ..., n. However for weighted classical splines, to be
encountered in Sec. 2.4.1, second order differentiabili-
ty no longer holds, and a weighted version of the linear
system (12) needs to be considered.

2.2.1 Expressing the Lavery Integral

As to the integral of the absolute value of the second
derivative, it is readily available in the case that the
derivative does not change sign inside the subinterval:

This includes the case in which the polynomial is of
lesser degree than cubic, and thus has constant second

derivatives. This case is signaled by the vanishing of
the quantity Di introduced earlier in (8).

The function f ″(x), however, is a linear function in x
and, unless constant, changes sign at some location x̂,
which also marks the location of the inflection point of
fi(x). Suppose this location falls into the interior of the
subinterval:

xi–1 < x̂ < xi.

Then the integral has to be calculated as the sum of two
integrals of linear functions:

The integrals between the absolute value bars are of
opposite signs, so that the total integral can be written
as the absolute value of a difference of integrals

These integrals can be separately evaluated as differ-
ences of slopes. Let

m̂ i = f ′i(x̂)

denote the inflection slope, then — in the case of an
interior inflection —

(13) e(fi) = |2m̂– mi–1 – mi|.                     

The quantities Ui , Vi depend linearly on the two slopes
mi–1, mi . Conversely, those slopes can be expressed in
terms of Ui , Vi .

(14)

The next step is to express the inflection slope in terms
of Ui , Vi . To this end, we express the inflection argu-
ment by its barycentric weights:

(15)                       x̂ = λ̂i xi–1 + µ̂ i xi ,                          

From the expression (10) for fi″(x) it follows that

where the denominator Di = Ui + Vi = 6Mi – 3mi–1 –3mi

has already been encountered in (8) as a quantity that
vanishes if and only if the polynomial in question is
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parabolic or linear. Thus Di = 0 leads back to the previ-
ous case of no sign changes by the second derivative.

The weights λ̂i, µ̂ i may now be inserted into the
expression (7) for the derivative f ′i(x). This gives

Substituting for mi–1, mi according to (14) yields

as well as

(16)

in view of (19). In terms of the slopes mi–1, mi:

The above expressions for e(fi) are also valid if the
inflections occur at the ends xi–1, xi of the interval of
definition, reducing to e(fi) = |mi – mi–1|, in accordance
with earlier results.

We are now ready to examine the full Lavery inte-
gral. At first blush, all that remains to be done is to sum
over the partial integrals e(fi) in their various forms. We
will show, however, that many terms of the expressions
(13) cancel each other out as these partial integrals are
added together. To this end, we distinguish five sepa-
rate kinds of polynomials fi(x) depending on their
behavior in the interior of the interval between its
knots, xi–1 < x < xi:
• “Linear”; here fi″(x) = 0 throughout

and e(fi) = 0
• “Convex”; here fi″(x) > 0 in the interior of the inter-

val [xi–1, xi]
and e(fi) = mi – mi–1

• “Concave”; here fi″(x) < 0 in the interior of the inter-
val [xi–1, xi]
and e(fi) = mi–1 – mi

• “Convex-concave”; here fi″(x) > 0 for x < x̂, fi″(x) < 0
for x > x̂
and e(fi) = +m̂– mi–1 – mi, also Di > 0

• “Concave-convex”; here fi″(x) < 0 for x < x̂, fi″(x) > 0
for x > x̂
and e(fi) = –m̂+ mi–1 + mi, also Di < 0

The last two categories are the ones with an interior
inflection point x̂ and inflection slope m̂ .

The interior inflection points considered so far may
not be the only inflection points of the spline function
f (x). Inflections occur also at knots xi, 0 < i < n if a con-
cave or convex-concave polynomial is followed by a
convex or convex-concave polynomial and, analogous-
ly, if a convex or concave-convex polynomial is fol-
lowed by a concave or concave-convex polynomial. We
refer to such knots as “inflection knots”. To make mat-
ters more complicated, however, inflection may occur
along an entire stretch of consecutive linear polynomi-
als of equal slope, the inflection slope in this case, pro-
vided there are adjacent nonlinear polynomials at both
ends of such a stretch exhibiting the same
convexity/concavity pattern that would cause an inflec-
tion at a knot. In this case, we choose an arbitrary knot,
say, the leftmost one in the linear stretch, as the inflec-
tion knot representing the inflection.

Clearly, slopes at interior knots that are not inflec-
tions cancel out as the expressions (13) for the Lavery
integrals e(fi) for the partial spline functions fi(x) are
added up. See Fig. 9 for an example. This leads to

Observation A: The Lavery integral of a cubic
spline function is the absolute value of an alternating
sum of the inflection slopes and of the end slopes. Let

m̂1, m̂2, m̂3, ...,  m̂L ,

be the sequence of all inflection points identified above,
sorted from left to right by their location. Then
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Fig. 9. Lavery integral as expressed by inflection slopes and end
slopes.
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(Note that the indices l of m̂ l do not refer to the interval
in which they are located).

2.3 Properties of Lavery Splines

In this section, we gather some information about
Lavery Splines, namely, interpolating spline functions
in the affine space S which minimize their respective
Lavery integrals. A first general observation concerns
the convexity of the Lavery integral.

The Holladay and Lavery integrals (3) and (4) of a
piecewise cubic spline function,

f (x) = f (m0, m1, ..., mn; x)

are functions of the slope specifications mi:

E( f ) = E(m1, m2, ..., mn), e( f ) = e(m1, m2, ..., mn).

The quadratic function E( f ) representing the Holladay
integral can be shown to be positive definite and, there-
fore, strictly convex. Its minimum is unique on the
affine manifold S interpolating spline functions. The
restriction to S is, of course, necessary as the value of
E( f ) would not change if the spline function f (x) were
modified by adding a linear function in x. Adding a
non-zero linear function to the function f (x) would not
preserve its interpolation property.

2.3.1 Convexity

Next, we establish the convexity of the Lavery inte-
gral. It may be viewed as the extension of the L1 vector
norm to a norm on the linear space F″ of second deriv-
atives of spline functions:

e( f ) = || f ″||1.

The following generic seminorm properties are easily
verified for the piecewise linear functions in F″,

|| f ″||1 = 0 <=> f ″ = 0
|α || f ″||1| = |α ||| f ″||1

along with the triangle inequality,

|| f (!)″ + f (2)″||1 ≤ || f (1)″||1 + || f (2)″||1.              

Suppose the two spline functions f (1), f (2) are actual-
ly two interpolating spline functions and, therefore, in
the affine space S. Then their mean is again in S and,
from the triangle inequality,

In terms of Lavery integrals,

which establishes convexity. This leads immediately to

Observation B: Any positive linear combination
of Lavery splines for the same interpolation problem,
— in particular, their mean — , is again a Lavery spline
for this problem.

2.3.2 Uniqueness of Inflections

Contrary to the Holladay functional, which is strict-
ly convex, the Lavery integral is not. As a result,
uniqueness does not follow and, in fact, does not hold,
as an example in Sec. 2.3.4 will show. Such minima of
a convex function, however, must form a convex set.

Note that, in general,

If both f (1) and f (2) are Lavery splines for the same inter-
polation problem, then so is their mean, and all three
functions

return the same optimal value for their Lavery inte-
grals. Thus equality holds in the above relation. This
implies that both f 1″(x) and f 2″(x) have the same sign
pattern:

f (1)″(x) ≥ 0 if and only if f (2)″(x) ≥ 0.

This can be rephrased as
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Observation C: Two Lavery splines for the same
optimization problem share essentially the same inflec-
tions: if one of them has an inflection point at x = x̂,
then so has the other unless it is linear at this point.

2.3.3 Free Ends of Lavery Splines

Here we will examine the free ends of Lavery
splines, in particular, the cubic polynomial f1(x) and the
corresponding first summand e(f1) of the Lavery inte-
gral e(f ) . As the end slope m0 may vary freely, it must
optimize e(f1) while keeping the slope m1 fixed. This
fact determines the behavior of Lavery splines at free
ends. As seen in the previous section, the first summand
e(f1) is a convex function in the variables m0, m1. If the
slope m1 is held fixed, e(f1)(m0) is convex as a function
in m0 alone. If the fixed slope equals the straight-line
slope, then m0 = m1 = M1 obviously represents the opti-
mal value for m0, since f1(x) in that case is a straight line
with e(f1) = 0. We suppose, therefore, that m1 ≠ M1, and
we examine the case, that f1(x) has an inflection x̂ in the
interval between the first two knots, x0 ≤ x̂ ≤ x1.

Consider the function

where m̂ as well as U1, V1 also depend on the variable
m0. Clearly, the absolute value of e∼(f1) is given by e(f1).
Note that

in view of (10), and

Solving the quadratic equation for λ̂, and taking into
account that 0 ≤ λ̂ ≤ 1, yields

(17)

The value of m0 for which this value for λ̂1 is realized
can be inferred from the general definition (15) of an
inflection, giving the barycentric coordinate λ̂1 in terms
of the slopes m0, m1, as follows:

λ̂1(6M1 – 3m0 – 3m1) = 3M1 – m0 – 2m1,          

which — for the particular value (17) of λ̂1 — yields
the corresponding end-slope

(18)

This value for m0 represents a locally unique stationary
value of e∼(f1)(m0).

Now e∼(f1)(m0) = 0 would imply e(f1)(m0) = 0, and
consequently linearity, that is, m0 = m1 = M1, which has
been ruled out. By continuity, e∼(f1)(m0) is either always
positive or always negative, — in other words, either

e(f1)(m0) = + e∼(f1)(m0)

or

e(f1)(m0) = –e∼(f1)(m0).

This implies that the value (18) for m0 is also a locally
unique stationary value of e(f1)(m0). In view of the con-
vexity of this function, it is also its minimizer. At the
last end we differentiate

(19)

and find

Symmetrically, we thus have

µ̂n = λ̂1, λ̂n = µ̂1.                          

The equation

µ̂n(6Mn – 3mn–1 – 3mn) = 3Mn – 2mn–1 – mn

thus yields a symmetric relationship to (18):

(20)

This establishes

Observation D: The free ends of Lavery splines
are either linear functions or they contain an inflection
in the interior of their interval of definition. The loca-
tions x̂1, x̂n of these inflections are universally given,
respectively, by
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Observation D enables us to determine universal val-
ues for partial Lavery integrals at the end-intervals of
Lavery splines. By (15), (16), (18), and again by (20),
which implies

we find

Substituting for m0 and mn, respectively in D1 = 6M1 –
3m0 – 3m1 and Dn = 6Mn – 3mn–1 – 3mn,

giving rise to

Observation E: A necessary, but far from suffi-
cient, condition for a spline function f to be a Lavery
spline is that

2.3.4 Examples of Non-unique Lavery Splines

In this section, we present an example in which the
Lavery splines are not unique. Consider the three points
(Figs. 10, 11, 12):

P0 = (x0, y0) = (–1, –1)
(21) P1 = (x1, y1) = (0, 0)

P2 = (x2, y2) = (+1, –1).

The associated interpolating cubic spline functions
f (x) are then defined by their slopes

m0, m1, m2

at these points. There are two subintervals with cubic
polynomials

f1(x), f2(x),

each of them a free end. This determines the coordi-
nates x̂1, x̂2 at inflections:
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Fig. 10. One of three Lavery splines for the same interpolation prob-
lem.

Fig. 11. Second of three Lavery splines for the same interpolation
problem.

Fig. 12. Third of three Lavery splines for the same interpolation
problem.



Note that both partial Lavery integrals are end-inte-
grals. For an interpolating spline function f (x) to be a
Lavery spline it will be necessary by Observation E that

so that

Clearly

(22)                           –1 ≤ m1 ≤ 1                            

implies

|1 – m1| + |–1 – m1| = |(1 – m1) + (–1 – m1)| = 2|m1| ≤ 2,

whereas either m1 < –1 or m1 > 1 would imply

|1 – m1| + |–1 – m1| = 2 ≥ 2 |m1|.

Thus condition (22) characterizes all Lavery splines for
the example.

Consider now any slope m1 from –1 through +1. For
m1 = –1, we have by (18), (20), and in view of M1 = 1,
M2 = –1:

Symmetrically, we find for m1 = +1 that

These slopes, respectively, determine the two extreme
Lavery splines, because each partial function is at a free
end, and is optimized according to Observation D in the
previous section. The two resulting Lavery splines are
extreme in that each has a straight line segment as a
partial function.

Using Hermite’s formula (6) and substituting for x,
we find for the choice m1 = –1,

For m1 = +1, the resulting Lavery spline is the symmet-
ric image of the previous one:

Both splines are shown in Figs. 10, 11. The self-sym-
metric spline from the choice m1 = 0 is shown in Fig.
12. In the latter case,

and

This Lavery spline is the mean of the two splines with
linear free ends. This is an instance of observation B
about positive linear combinations of Lavery splines in
Sec. 2.3.1.

2.4 Computing Univariate Lavery Splines

We now turn our attention to the computation of
Lavery splines. The commonly used approach (see
Lavery [11,12]) is to minimize the Lavery integral in
discretized form, say,

(23)

where the integrand is sampled in each subinterval [xi–1,
xi] at ki equidistant points. Now

Thus

The Lavery integral is discretized as a sum of absolute
values of the variables mi of the minimization.
Minimizing such an expression is a Linear
Programming problem. Many satisfactory methods for
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solving it are available, such as the Simplex Method or
Interior Point Methods. The accuracy of the discretiza-
tion increases with the number of sample points, but
computational effort increases accordingly.

For that reason, and also to motivate an analogous
approach in the bivariate case, we are proposing to min-
imize a different approximation to the Lavery integral,
one that takes advantage of the ease of computation
offered by energy minimization.

By the mean value theorem of integral calculus,
there exist arguments ui such that

we then propose to approximate the Lavery integral by
the following Riemann sum:

(24)

In contrast to the approximation (23) by discretization,
this approximation does not offer the option of further
refinement, unless the interpolation problem itself is
changed by adding additional knots and ordinates. In a
sense, it approximates the Lavery paradigm itself rather
than the Lavery integral. We still use, however, the term
“approximate Lavery integral” for our proposed
approximation (24).

2.4.1 An Iterative Algorithm for Approximate
Lavery Splines

For the purpose of computation, we rewrite the non-
zero terms in (46)

This expression suggests an iterative approach.
Starting with the classic spline f (0)(x), a sequence of
interpolating spline functions is generated in hopes to
converge towards the approximate Lavery integral (24)

f (0)(x), f (1)(x), ..., f (l)(x), ...

with associated partial Holladay integrals

At each step l = 0, 1, 2, ..., weights

are introduced. Given the function f (l), the subsequent
function f (l+1) is determined as the solution to the fol-
lowing minimization problem:

This approach raises the question what to do if E(f i
(l))

vanishes as the corresponding weight is then not
defined?

Simply ignoring such terms may prematurely lock in
straight line segments between knots. What first comes
to mind is to specify a limit ε > 0 and boost lower val-
ues of E(f i

(l)) to this level. A more diligent procedure
might be to start with all weights at value 1, — the
weight setting that yields the initial classical spline
according to Holliday’s observation — , and then pro-
gressively increase the use of weights. Such strategies
remain to be explored.

In general, adding up partial Holliday integrals, each
with weight, say, wi leads again to an expression of the
energy of a physical structure: a collection of thin
beams of different thicknesses given by wi, respective-
ly, and welded together at knots. Minimizing this ener-
gy expression requires an adjustment to the linear sys-
tem (12).

The weighted energy of the partial spline functions
fi(x) is just the product of the straight Holliday integral
and the respective weight:

EW(fi) = wiE(fi).

The total weighted energy is thus given by

This means that in the expression (11) for E(fi), the factor

is affected as it is multiplied by wi. In other words, 1the
substitution,

transforms the linear system (12) for minimizing E(f )
into the linear system for minimizing EW(f ):
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Note that the weighted classic splines are, in general,
not twice differentiable at the knots. However, due to
the fact that the first and the last equations have com-
mon factors wo, wn, respectively, they are equivalent to
the corresponding equations in the Holladay system
(12): free ends thus have zero second derivatives in the
weighted case, too. Again, this is to be expected from
Physics.

Note also that some commonly used methods for
determining classic splines such as B-splines or linear
systems formulated in terms of second derivatives at
knots do not carry over to the weighted case. However,
the above linear system is still “banded”, and many
excellent methods are known for its solution. To solve
this system we used the venerable Gauss-Seidel
method, not just for ease of programming, but also
because it seems to work for bivariate weighted splines.
Its advantage lies in the fact that the matrix of the lin-
ear system need not be changed and can be read, so to
speak, in sequence. This is important for the very large
systems likely to arise in the bivariate case. In the uni-
variate case, the convergence behavior is well under-
stood (See Varga [22]). Using an iterative method for
solving the class of linear systems above will result in
a two-tiered iteration procedure: an “outer” iteration,
developing new sets of weights, and an “inner” itera-
tion, solving the resulting linear system. Such proce-
dures can be “balanced”, that is, the inner iteration may
be terminated at a lower accuracy level during the early
stages of the outer iteration and may be carried to a
higher level of accuracy as the outer method approach-
es convergence. This is an added advantage of an itera-
tive method for solving the linear systems at hand.

Note finally, that the approximate Lavery method
proposed here will definitely not converge to the opti-
mal Lavery integral. This is because the approximate
solutions are based on weighted classic splines, and
therefore have vanishing second derivatives at the free

ends. The second derivatives of Lavery splines, on the
other hand, assume their inflections in interiors of the
end interval (See Observation D).

Observation F: Unless a free end function of an
approximate Lavery spline is linear, it disagrees with
the corresponding end function of the true Lavery
spline in that the latter has an inflection in the interior
of at least one end interval, whereas the former
assumes its inflection at the end knot.

The justification for introducing the approximate
Lavery splines concept lies in its computational ease
and the fact that it appears to retain the anti-oscillatory
dynamic of the original Lavery concept. In fact, the
examples in Figs. 5, 6, and 8 were calculated using the
approximate algorithm outlined in this section.

3. Bivariate Spline Interpolation

The development of bivariate splines parallels that of
univariate ones to a large extent. For both, the first step
is to specify a linear space F of bivariate spline func-
tions f (x, y), defined on a polygonally partitioned
region

Ω

In view of our emphasis on the TIN framework of tri-
angulations, however, we choose for our discussion a
rectangular region Ω and an irregular set of “knots” in
Ω,

vi = (xi , yi) ∈ Ω, i = 1, ..., n.

An interpolation problem results, if “elevations” zi are
specified at the vertices vi = (xi, yi).

The region Ω is then partitioned into triangles

tk .

The vertices

(xik,1
, yik,1

), (xik,2
, yik,2

), (xik,3
, yik,3

)

of any such triangle tk are among the specified knots,
and those are the only knots in this triangle. In this fash-
ion, a “triangulation” of the region Ω is obtained.
Spline functions are then defined by installing partial
functions
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fk(x, y), k = 1, ..., m

in their respective triangles tk of the triangulation.
Following C. Lawson [14,15], we install above each

triangle tk a reduced Hsieh-Clough-Tocher (rHTC) ele-
ment. The reduced Hsieh-Clough-Tocher (rHCT) ele-
ment, displayed in Fig. 14, provides a means for repre-
senting smooth TIN surfaces (see Lawson [14,15]). The
rHCT element is defined as a function over a triangle in
the x, y-plane, and is fully determined by the elevations
and the partial slopes or derivatives at triangle corners.
The triangle is divided into three subtriangles with their
common vertex at the centroid of the three corners of
the full triangle. In each of the three subtriangles the
rHCT function is a bivariate cubic function. Together,
these functions form a C1 function on the full triangle
(Fig. 13). This smooth rHCT function is furthermore
constrained by the linear perpendicularity condition on
the derivatives orthogonal to the outside boundary
edges of the triangular element: along each such edge,
these derivatives are required to be linear functions. It
follows that the orthogonal derivatives along an edge
are fully determined by their values at the ends of the
edges. These values are inherent to both triangles adja-
cent to the edge so that the orthogonal derivatives coin-
cide when calculated within each of the two triangles
independently. The above condition thus provides the
key property ensuring smoothness of a rHTC surface.

As will be seen in Sec. 3.1.2, the restriction inherent in
the linear perpendicularity condition may be more
severe than commonly expected.

To this end, “elevations”

zi

and “partial slopes”

(27)                    zxi , zyi , i = 1, ..., n,

are prescribed at the knots vi . As the vertices of each tri-
angle tk are among the specified knots, the correspon-
ding elevations

zik,1
, zik,2

, zik,3
,

and partial slopes

zxik,1
, zyik,1

, zxik,2
, zyik,2

, zxik,3
, zyik,3

.

furnish the parameters necessary for defining the rHTC
element fk(x, y). As pointed out above in the current sec-
tion, each specification of elevations and partial slopes
at the knots yields a C1 function f (x, y), which also rep-
resents a smooth surface over the region of definition
Ω. All such functions, — relating to the given triangu-
lation of Ω — , constitute a linear space of “spline func-
tions” and their respective derivative linear spaces

F, Fx , Fy , Fxx , Fxy , Fyy .

If a specific set of elevations zi is to be interpolated,
then those spline functions which meet these elevations
constitute an affine space of “interpolating spline func-
tions” and its derivative affine spaces

S, Sx , Sy , Sxx , Sxy , Syy .

Note, again, that second derivatives are not fully
defined for rHTC elements. Indeed, along edges sepa-
rating two subtriangles of an rHTC element as well as
along edges separating two triangles of the triangula-
tion there may be two different values in contention
depending from which side a point on such an edge is
approached. For purposes of integration, this is not an
issue since the discrepancies are restricted to a set of
measure zero, so that the integrals considered below are
still well defined.
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Fig. 13. Reduced Hsieh-Clough-Tocher (rHCT) element. zix, ziy
denote the partial slopes zxi, zyi (27).



3.1 Paradigms for Non-Oscillatory Bivariate
Splines

For the purpose of interpolation, the elevations zi at
knots are specified, and the task at hand is to determine
the partial slopes zxi , zyi so as to arrive at a “best” inter-
polating spline function. Such an optimal spline func-
tion is then referred to as a “(bivariate) spline”.
Obviously, there are various kinds of splines depending
on the choice of the linear space of spline functions and
the choice of the optimization criterion.

Paralleling the classical univariate approach, “thin
plate” minimization exemplifies the “classical”
approach, and the resulting spline will be referred to as
the “classical spline”, the functional requiring mini-
mization being

(28)

An approach to computing the surface energy formu-
la has been announced by McClain and Witzgall [16]
for rHCT element. A newer version of the report is cur-
rently being prepared by McClain, Witzgall, and
Gilsinn [17].

The authors believe that, contrary to univariate clas-
sical splines, bivariate classical splines as defined
above are, in general, not in class C2, that is, twice dif-
ferentiable. Nevertheless they are “stiff” and thus sub-
ject to the dreaded spurious oscillations and Gibbs phe-
nomena. This can be seen along edges of buildings in
the urban data set of Baltimore, MD, given in Fig. 14.
Lavery and Gilsinn [13] were able to address this prob-
lem by extending his paradigm for univariate nonoscil-

latory splines to the bivariate case by minimizing the
functional

(29) dxdy.

Again, the squares of second derivatives in an energy
integral, — here E∼(f ) as defined in (28) — , are replaced
by absolute values. We will refer to the so defined
splines also a “(bivariate) Lavery splines”.

In view of the non-uniqueness result for univariate
Lavery splines, the bivariate Lavery splines are expect-
ed not to be unique either, as will be discussed below.
Therefore, the Lavery paradigm typically includes a
regulatory term such as adding a small multiple of
f ′(x, y)2. The resulting bivariate Lavery splines have
produced oscillation-free interpolations and approxi-
mations in a large array of applications. They are com-
puted by discretizations leading to very large linear
programming problems.

For large surface generation tasks based on interpo-
lation, the resulting computational effort may be pro-
hibitive. Moreover, the bivariate Lavery integral (29)
functional is not invariant under rotation of the coordi-
nate system. The authors have therefore proposed an
alternate extension of the univariate Lavery paradigm
to the bivariate case:

(30)

Note, that this paradigm is indeed an extension of the
univariate Lavery paradigm. Indeed,

so that the integrand of the univariate Lavery integral
may also be interpreted as the squareroot of an energy,
— in this case, the elastic energy of a thin beam.
Replacing that energy expression by that for a thin
plate, yields the alternate extension.

3.1.1 Properties of the Alternative Bivariate
Paradigm

The differential expression

(fxx
2 + 2fxy

2 + fyy
2)dxdy

is readily seen to be rotation invariant, as is to be
expected, given its physical meaning as the integrand
for the representation (28) of the thin plate energy. It
follows that every differential expression of the form
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Fig. 14. Urban scene (Baltimore): Gibbs phenomena are visible.
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Φ(fxx
2 + 2fxy

2 + fyy
2)dxdy

is also rotation invariant. This leads to the

Observation G: The Alternate Bivariate Functional
e∼(f ) is invariant under a rotation in the x, y-plane.

Let f = f (x, y) , g = g(x, y) ∈ S be two interpolating
spline functions. Invoking the general vector inequality
||u|| + ||v|| ≥ ||u + v||, we find

so that

and in terms of the spline functionals,

Since S is an affine space, the mean (f + g)/2 is again in
S. Based on the above inequality, we thus have

Observation H: The alternate Bivariate functional
(30) is a convex functional. In particular, as expressed
in terms of the partial slopes,

e∼(f ) = e∼(zx1, zy1, ..., zxn , zyn),

it is a convex function in terms of these partial slopes.

3.1.2 A Related Non-Uniqueness Result

We do not know at this point, whether the convexity
is moreover strict. We expect that it is not. Strict con-
vexity would imply uniqueness of minima and, again,
we do not believe that this is the case. However, an
example for such non-uniqueness is eluding us for our
specific space of rHTC spline functions.

For different bivariate functions, however, it is pos-
sible to establish non-uniqueness of a minimum.
Consider a function

s(x, y) , –1 ≤ x ≤ +1, 0 ≤ y 1

representing a rectangular strip bent only in the direc-
tion of the x-axis. In the direction of the y-axis, the
function s(x, y) is constant (Fig. 15), in particular, for
all y,

s(–1, y) = –1, s(0, y) = 0, s(+1, y) = –1.

The function s(x, y) thus interpolates the values –1 , 0,
–1 along the contour lines in the direction of the y-axis
at the arguments x = –1, 0, +1. Given any Lavery spline
f (x) considered in Sec. 2.3.3 as interpolating the exam-
ple (21). Then it is readily seen, that any function

s(x, y) = f (x)

minimizes both bivariate functionals: e(s), e∼(s). For
functions corresponding to strips bent in only the strip
direction, these bivariate functionals have thus multiple
minima. This makes a strong case for non-uniqueness
bivariate splines minimizing the functionals (29) and
(30). However, we were not able to pinpoint non-
uniqueness for the rHTC based spline functions consid-
ered in this section. In particular, we were surprised to
realize that the function s(x, y) cannot be generated
using rHTC elements. As this fact points to an impor-
tant limitation of using rHTC elements, we formulate
the
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Fig. 15. Non-uniqueness of a minimum for a bivariate function.



Observation J: The surface function of a rectan-
gular strip bent only in the strip direction cannot be
represented by means of rHTC elements.

3.2 Computing Bivariate Splines Based on an
Alternate Paradigm

The proposed alternate functional (53) is still expen-
sive to minimize. In analogy to the procedure described
in Sec. 2.4.1, we propose to approximate that function-
al as follows. Let

∆k

denote the area of the triangle tk of the triangulation.
Then the integral of each partial spline function or ele-
ment fk = fk(x, y) is individually approximated.

This approximation suggests an iterative procedure
based on minimizing weighted energy expressions:
Starting with the classic spline f (0)(x, y), a sequence of
interpolating spline functions is generated in hopes to
converge towards the alternate Lavery integral (30),

f (0)(x, y), f (1)(x, y), ..., f (l)(x, y), ...

with associated partial integrals

At each step l = 0, 1, 2, ..., weights

are introduced. Given the function f (l–1), the subsequent
function f (l) is determined as the solution to the follow-
ing minimization problem (compare (25)):

(31)

For the exploratory implementation reported here, the
above minimization of a quadratic function in the par-
tial slopes

zxik,1
, zyik,1

, zxik,2
, zyik,2

, zxik,3
, zyik,3

.

is again formulated as solving a linear system of equa-
tions in these variables, and Gauss-Seidel iteration pro-
vided a workable option. Just as discussed in the uni-
variate case, there are two iterative processes, one “on
top of” of the other. The “inner iteration” aims to solve
the linear system of equations in order to solve the
intermediate minimization problem (31), while the
“outer” iteration sequentially creates spline functions
expected to converge toward a limit that approximates
the alternate Lavery spline defined by the minimization
of the alternate Lavery functional (30).

This approach raises the same issues as its parallel in
the univariate case. The above iterative approximation
based on consecutive minimization of weighted sums
of integrals (31) cannot be expected to converge exact-
ly to the alternate bivariate Lavery spline. The argu-
ment relies on Observation F pertaining to the univari-
ate case. Each iterate f (l)(x, y) minimizes the energy of
a physical structure consisting of thin plates of various
thicknesses, namely the weights. Any minimizing
shape of that structure, however, is known to have some
vanishing second derivatives at its boundary.
Univariate Lavery splines do not have this property,
and we do not expect bivariate Lavery splines to have
this property, either.

Provisions need to be made should one of the inte-
grals E∼(fk

(l–1)) vanish. This is a serious problem because
very large or “infinite” weights will cause certain rHTC
elements to remain stuck in linear form. In addition,
limits of bivariate Lavery splines, in the original as well
as the alternate formulation, may not be unique (see
Sec. 3.1). These issues call for regularization proce-
dures which are adequate for particular kinds of appli-
cations.

Indeed, spurious spikes were observed for the appli-
cations demonstrated here. The problem was solved by
interspersing an averaging step, where the partial
slopes were replaced by averages of neighboring
slopes.

While our experiences with approximating alternate
bivariate Lavery splines (Fig. 16) were encouraging, in
particular, for very large data sets, much work needs to
be done.

The accuracy performance of the Gauss-Seidel itera-
tion is a major issue. Simple examples show that initial
steps are not even contracting. When does contraction
start? Does it keep contracting after that? Much
research has been aimed at these questions. These
analyses of the convergence properties of the Gauss-
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Seidel iteration, however, provide estimates of the
number of iterations required to solve linear equations
to a specified accuracy which are much too large to be
practical. To be practical, the number of “passes”
through the entire system of linear equations on the
order of 10 or 20, has to be sufficient.

In our experience, relatively few steps of the “outer”
iteration were sufficient to provide qualitatively satis-
factory results. However, we do not have formal proof
of convergence.

Finally, and perhaps most importantly, a better
understanding of the necessary regularization devices
needs to be developed.

4. Conclusions

In this paper we have investigated some properties of
non-oscillatory splines introduced by John Lavery
[11,12]. These splines, called in this paper Lavery
splines, minimize what we have termed the Lavery
integral (4). We have seen that the minimizing spline
for (4) does indeed model sharp edges and jumps in
data without introducing the “Gibbs phenomenon” at
the corners. We have shown that the Lavery integral
and the associated Lavery splines satisfy a number of
properties. First, we have shown that the Lavery inte-
gral of a cubic spline function is the absolute value of
an alternating sum of inflection slopes and of the end

slopes. Next, we showed that any positive linear com-
bination of Lavery splines for the same interpolation
problem is again a Lavery spline for the same problem.
Furthermore, two Lavery splines for the same opti-
mization problem share essentially the same inflection
points and that the free ends of Lavery splines are either
linear functions or they contain an inflection point in
the interval of definition.

Two algorithms for estimating Lavery splines have
also been considered. The first algorithm introduced by
John Lavery [11,12] reduces to solving a least absolute
value minimization problem for which he used an inte-
rior point method for linear programming to obtain the
minimum spline coefficients. The absolute value mini-
mization was based on a “discretization” which leads to
a very large number of variables as sufficiently smaller
discretizations were considered. The extension of this
method to bivariate Lavery splines also led to compu-
tationally intensive compute times even for moderate
data sizes. The authors have introduced a modified
approach based on an iterated weighted least squares
algorithm. Although the minimizing spline this algo-
rithm produces is not a Lavery spline it is an approxi-
mation that also produces sharp edges without the
“Gibbs phenomenon.”

In the bivariate case the Lavery integral minimizes
the integral of the sum of the absolute values of the sec-
ond partial derivatives of the spline. Analogous to the
univariate case we introduce an alternative variational
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Fig. 16. Example of 2-D Lavery splines.



principle based on the integral of the square root of the
sum of squares of the second partial derivatives of the
bivariate spline. Whereas the Lavery integral in the
bivariate case is not rotationally invariant, the alterna-
tive principle is. The alternative bivariate functional is
shown to be a convex functional and, when expressed
in terms of the partial slopes at the vertices of an under-
lying element, it is a convex function of these slopes.
We have also shown that a rectangular strip bent only
in the strip direction cannot be represented by means of
a triangular rHTC element.

Analogous to the alternative weighted least squares
algorithm introduced to compute the approximate uni-
variate splines we introduce an alternative weighted
least squares algorithm in the bivariate case. Although
we have not introduced a convergence analysis of the
alternative algorithms in this paper, computational
experience has shown that the iterative, Gauss-Seidel
based, algorithm used provides qualitatively satisfacto-
ry results in only a few iterations of the main loop.
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